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A B S T R A C T

The recent expansion of human activities such as agriculture has continuously threatened to block

wildlife migration corridors that connect Amboseli National Park (Kenya) to surrounding ecosystems.

We study the impact of blocked corridors on herbivore populations using a spatial mathematical model

that describes the movements and population dynamics of selected species (zebra, wildebeest and

Grant’s gazelle) based on resource availability. Aggregation methods are used to reduce the complexity

of the model which uses actual parameters calibrated from long term data collected in the area for over

three decades. The model suggests the need to maintain these connections to sustain species diversity.

Our results show that blocked migration corridors lead to competitive exclusion where only one species

survives. However, a possible mechanism of maintenance of biodiversity in the area could be due to an

exchange of animals between the park and surrounding ecosystems, when the oscillations of species

densities in the ecosystems are out of phase compared to each other and to those within the park.

� 2012 Elsevier B.V. All rights reserved.
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1. Introduction

Recent expansion of human activities such as agriculture, has
continuously threatened to disconnect Amboseli National Park
(Fig. 1) from surrounding ecosystems. Blocking of the migration
corridors could have a disastrous impact on the species popula-
tions inside the park. In order to understand the ecology of large
herbivores in fluctuating environments, there is the need for
development of mathematical models that can inform conserva-
tion managers of remedial policies and practice for sustaining
species diversity. The aim of this work is to contribute to a better
understanding of the ecological dynamics of the Amboseli
ecosystem using mathematical models: we demonstrate the need
to maintain migration corridors that connect to other surrounding
ecosystems and predict dynamics of population sizes.

The Amboseli ecosystem is complex, with a large number of
species interacting in a landscape that fluctuates with seasons,
erratic weather patterns, climatic variability and prolonged
droughts. In this work, we present a simple model of the spatial
population dynamics of the main herbivorous species in Amboseli
(zebra, wildebeest and Grant’s gazelle), describing their space and
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time changes in population density. Aerial surveys on large mammal
censuses are counted on a network consisting of two-dimensional
patches (5 km � 5 km) connected by dispersal. In our model, we use
this collection of patches to represent the environment.

The complete model, which aims at describing the dynamics of
population densities in all the patches, must deal with many
coupled variables in a set of ordinary differential equations (ODEs).
Ordinarily, it is difficult to obtain analytical results from such a
system. However, when some processes occur at different time
scales, it is possible to simplify the complete model and to derive a
reduced model that governs fewer global variables using
aggregation of variables methods. Aggregation of variables is a
methodology aimed at reducing the complexity (i.e. the number of
variables) of large models (Iwasa et al., 1987). In this paper, we use
approximate aggregation methods (Iwasa et al., 1989) and more
precisely aggregation techniques based on time scale separation
methods (Auger and Roussarie, 1994). We also refer to recent
papers (Auger et al., 2008a,b) and to the review paper on spatial
aggregation of variables (Auger et al., 2012). The resulting
aggregated model can be handled easily and provides analytical
results.

This paper is organized as follows. Section 2 presents the
ecological background of the problem. Section 3 presents the
mathematical formulations of the model. Section 4 describes the
parameters in the model. Section 5 is devoted to the reduction of
the model using aggregation of variables methods. In Section 6, we
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Fig. 1. Representation of Amboseli ecosystem in southern Kenya, divided into 5 km � 5 km patches showing possible migration corridors (surrounding ecosystems linkages),

wildlife dispersal (percentage wildlife distribution) derived from long term Amboseli data and agriculture expansion in recent times (black dots).
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discuss the results and compare the dynamics of the model with
and without migration corridors. Section 7 concludes the paper.

2. Ecological background

The Amboseli ecosystem covers an area of 8500 km2 in
southern Kenya, close to the Tanzanian border and lies at an
altitude of 1200 m. The ecosystem encompasses the region utilized
by migratory large ungulates and pastoral livestock that concen-
trate each dry season around permanent swamps fed by Mt.
Kilimanjaro (Western, 1975). The open terrain and regular counts
of the populations and spatial distributions of all herbivores
weighing greater than 15 kg since 1967 (Western and Nightingale,
2004) make Amboseli an ideal field site for modelling studies.

The aerial surveys on large mammal censuses conducted by the
Amboseli Conservation Program (ACP) for over 40 years, are
counted on a network consisting of two-dimensional grids
(5 km � 5 km) connected by migration. Each patch is classified
as one of the eight major types of habitats in Amboseli (dense
woodland, open woodland, open bushland, grassland, dense bush,
swamp, sueda, swamp edge).

Amboseli National Park lies within the Amboseli ecosystem.
Long-term population censuses have shown that wildlife utilize a
larger area than the protected national park. On average, 50% of the
wildlife is found inside the national Park and 80% in the line shaded
area as shown in Fig. 1. This area includes the national park. The
Amboseli wildlife populations belong to a larger metapopulation
system. The movement of wildlife into and out of the Amboseli
ecosystem and the park could be of benefit to the animals in the
event of extreme conditions such as drought. In recent years,
agricultural activities (black dots in Fig. 1) have rapidly expanded
to wildlife dispersal areas threatening to disconnect this ecosystem
from the surrounding ones, that also support many different
wildlife species. Increasing human settlement and development in
the ecosystem will certainly isolate Amboseli National Park.
Limiting free movement of wildlife could have severe conse-
quences on long term species survival and species population
densities. We propose a mathematical model that describes the
population dynamics of the main herbivorous species and test the
effect of isolating the Amboseli ecosystem on the survival of these
species.

3. Construction of the model

We present a spatially explicit multi-habitat and multi-species
resource-consumer model based on a grid system of 5 km � 5 km
of the Amboseli ecosystem. The resource considered is grass and
the consumer species are primarily grazers. We build a model
which includes s herbivorous species occupying A patches
connected by dispersal. Species forage digestibility differs among
species and is governed by the body mass. Individuals within a
population select habitats or resources to maximize their forage
digestibility and energetic gains (Kshatriya, 1998). The main
species we focus on in our analysis are zebra, wildebeest and
Grant’s gazelle.

We use a demographic model based on energy budget similar to
the one developed by Kshatriya (1998). The effect of species body
size, digestive constraints of the herbivores and resource
abundance are incorporated. For the herbivore population, the
net growth rate is equal to the difference between the energy gain
from feeding and the energetic cost of maintenance. Individuals of
different species redistribute themselves through time in response
to changes in population and vegetation densities.

The model is coupled to a dispersal model in which the
proportion of animals leaving a patch is driven by the quantity of
resource available in that patch. It is also coupled to a migration
model, implicitly representing the connection to surrounding
parks in southern Kenya.

By using aggregation techniques in a patchy environment and
assuming a favourable scenario of a constant amount of grass
biomass available for each day, we determine the asymptotic
dynamics. Using the model, we explore the importance of
maintaining the migration corridors to other ecosystems and
investigate long-term species coexistence with and without the
connecting corridors.

The model is a combination of two sets of processes:
demographic processes which occur at a slow time scale and
dispersal processes which occur at a fast time scale. For each



Table 1
Average body weights, maximum resource intakes, digestive efficiency and

metabolic rate parameters used in the model for each species.

Species w [kg] g [kg/day] D q [MJ/day]

Zebra 200 4.68 0.561 19.28

Wildebeest 123 3.58 0.648 17.07

Grant’s gazelle 40 0.62 0.645 3.253

Source: Amboseli Conservation Program (ACP).
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species j 2 {1, . . ., s}, its density hij in patch i, i 2 {1, . . ., A}, is
governed by

dhij

dt
¼ ddemo

ij hð Þ þ ddisp
ij hð Þ (1)

where h = (h11, . . ., h1s, . . ., hA1, . . ., hAs). ddemo
ij hð Þ represents the part

of the variation of hij due to demographic processes and ddisp
ij hð Þ

represents the part of the variation due to dispersal processes.
The density of grass available depends on the type of habitat in

each patch. In patch i, i 2 {1, . . ., A}, the density of grass that can be
grazed is constant and is denoted as Ki, so as to simulate favourable
scenarios when resources are always available. For each species
j 2 {1, . . ., s}, the variation of density hij in patch i due to
demographic processes is given by:

ddemo
ij ðhÞ ¼

hijbðeij � q jÞ
v j

(2)

where eij is the per capita energy gain of herbivore species j grazing
in patch i, vj is the body mass, qj is the active metabolic rate, i.e. the
energy spent daily by animals, and b is the conversion factor from
energy to biomass.

The per capita energy gain depends on the species characteristics
(digestive efficiency, etc.) and on the quantity of food available. Inter
specific competition only occurs through the quantity of food made
available in each patch for each species. Species occupying the same
patch share the food according to factors like the density of
individuals for each species and their grazing ability. Thus the per
capita energy gain can be expressed in a general way as:

eij ¼ aD j f jðhi; KiÞ (3)

where Dj is the digestive efficiency of species j, a is the energy
contained per unit of grass that is assimilated, and f jðhi; KiÞ is the
amount of grass grazed per capita and per time unit in patch i by
species j, which depends on the densities hi ¼ ðhi1; . . . ; hisÞ of all
species in patch i and on the grass density in patch i, Ki. Species share
the resources in each patch according to their density and grazing
ability.

We introduce the maximum grazing efficiency gj which
represents the maximum possible intake of grass per unit of time
for an individual from species j (individual species daily food intake
cannot exceed the quantity gj). This quantity also represents the
ability to compete for food when there are several species: the
higher the grazing efficiency, the higher the food intake. In each
patch, animals are assumed to be distributed in such way that each
species occupy a part of the area which is proportional to its own
population number and weighted by its ability to graze gj.
Populations of species j access a proportion g jhij=

Ps
j0¼1 g j0hij0 of

the density of grass Ki in patch i.
For one individual from species j, the quantity of grass available

in patch i is

nij ¼
1

hij

g jhijPs
j0¼1 g j0hij0

Ki ¼
g jPs

j0¼1 g j0hij0
Ki (4)

Individuals from species j in patch i graze the available quantity
of grass nij. However, when grass is abundant, individuals will be
limited to the maximum possible intake gj. The amount of grass
grazed per capita is given by a Holling type II function of the
variable nij

f jðh; KiÞ ¼
nij

a þ 1
g j

nij

(5)

¼
g jKi

a
Ps

j0¼1 g j0hij0 þ Ki

(6)
The parameter a is time homogeneous and is set to 1 in order to
satisfy the hypothesis that for low quantities of grass, the amount
of grass grazed is proportional to nij. The growth of the biomass of
species j is then summarized as

ddemo
ij hð Þ ¼ hij

b
v j

aD jg jKiPs
j0¼1 g j0hij0 þ Ki

� q j

  !
(7)

In this model, we use a simple dispersal process: individuals
disperse to the neighbouring patches at a rate inversely
proportional to the quantity of food available in the patch they
are in. Intuitively, individuals are more likely to stay if food is
sufficiently available in their current patch. If food is insufficient,
they leave the patch. Furthermore, individuals have information on
the quantity of food available in their patch, but not on the quantity
of food in adjacent patches. Effect of dispersal which is inversely
proportional to resources available in a given patch is also
considered in El Abdllaoui et al. (2007) and Morozov et al. (2012).
We introduce a migration term dij � kijhij, where dij represents a
constant input of individuals into the park and kijhij an output of
animals proportional to the population density.

For each patch i, let us denote Vi the set of neighbouring patches.
The variation of hij due to dispersal dynamics for each patch i, i 2 {1,
. . ., A} and each species j, j 2 {1, . . ., s} is given by

ddisp
ij hð Þ ¼ �1

e
Vij j
Ki

hij þ
1

e

X
i0 2 Vi

1

Ki0
hi0 j þ dij � kijhij (8)

where |Vi| denotes the number of neighbouring patches. Parameter
1/e can either be seen as the magnitude or the speed of the
dispersal process. The smaller the e, the faster the dispersal
process.

In order to describe the global dynamics, demographic
processes and dispersal processes have to be combined. The set
of equations governing the dynamics reads:

dhij

dt
¼ hij

b
v j

aD jg jKiPs
j0¼1 g j0hij0 þ Ki

� q j

  !
� 1

e
Vij j
Ki

hij �
X

i0 2 Vi

hi0 j

Ki0

0
@

1
A

þ dij � kijhij (9)

When migration corridors are blocked, 8i 2 {1, . . ., A} and
8j 2 {1, . . ., s}, dij = 0 and kij = 0.

4. Parameters of the model

The parameter values used in this model were assigned from
published sources and from the long term data on vegetation and
animals monitored by Amboseli Conservation Program (ACP). The
values for grass densities Ki [kg/km2] were determined by
calculating the average vegetation available during the year
2008. These values range from K = 867 kg/km2 for open bushland
habitat to K = 8556 kg/km2 for the swamp habitat.

The digestive efficiency, D of the herbivore species used in the
model (Table 1) were based on Kshatriya (1998) and the digestive
kinematics model developed by Illius and Gordon (1992). Similar
studies by Ludwig et al. (2008) found that for instance, the maximum
intake for wildebeest is about 3700 g per day, close to the ACP
calibrations of 3580 g (dry weight) per day for a similar period. The
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active metabolic rate, qj [MJ/day] was based on Murray (1995).
Murray (1995) calculated that the wildebeest (143 kg) needs an
energy intake of 22.32 MJ/day for maintenance (Ludwig et al., 2008).
These parameters were assumed to be constant. The conversion
factor from energy to body mass, b [kg/MJ] was set to 0.0365
(Kshatriya, 1998). In the model, the value of parameter a is the
product of energy content (ec = 15.6 MJ/kg), the efficiency of
conversion of food energy (ingested energy) into metabolic energy
(mc = 0.75) (Blaxter, 1980), and fraction of day foraging (pd = 17/24)
(Kshatriya, 1998). Foraging time is a large component of the daily
activity budget of an animal (Fancy and White, 1985). The value of
a = ec � mc � pd was therefore set to (a = 8.288) in this model.

The initial density distribution values used in the model were
actual aerial survey estimates for the year 2008. The quantity
eKi= Vij j represents the average time spent by an animal in patch i.
From field observation, parameter e has been roughly estimated to
be �0.1, which corresponds to an average time of 10–100 days
(depending on the resource considered) or lesser. Analysis was
performed for e = 0.1; results are still valid for smaller values.
Other simulations were performed for e = 5 to show that the
qualitative results are robust even when dispersal processes are
not considered to occur at a fast time scale.

Migration to and from other parks has not been estimated from
real data: in this paper, we study the effect of migration corridors on
coexistence of species inside the Amboseli ecosystem. We compare a
scenario where a small input and output (200 animals for each
species entering the entire area and 1% leaving the area each day) to a
scenario without the migration corridors. These values are small
enough to consider that the process occurs at slow time scale.

5. Aggregated model

The complete model governs A � s = 1500 variables and
consists of the same number of differential equations. Even if it
is possible to simulate the dynamics of this model, it is hard to give
analytical results and the mathematical predictions of the model
dynamics. We now build an approximate model which consists of
s = 3 equations governing the total species densities (i.e. total
densities obtained by summation of local densities over all patches
of the complete spatial domain). This model, called the aggregated
model, is mathematically tractable as it is possible to analytically
compute its equilibria. The dynamics of the aggregated model is an
approximation of the original global model.

When dispersal is fast in comparison with demographic
processes, it is possible to build an approximate simplified model
using reductions methods called aggregation of variables based on
perturbation techniques and on the application of a center
manifold theorem of Fenichel (Auger and Poggiale, 1995). The
model is reduced to an aggregated model that consists of a system
of fewer equations by using difference between timescales (see
Appendix A for a more detailed explanation).

When e is small, demographic processes occur at a much slower
time scale than dispersal processes. We can introduce a fast time
scale by considering, t = t/e which can be related to the dispersal
processes. When describing the dynamics at fast time scale, Eq. (9)
now reads:

dhij

dt
¼ ehij

b
v j

aD jg jKiPs
j0¼1 g j0hij0 þ Ki

� q j

  !
� Vij j

Ki
hij þ

X
i0 2 Vi

hi0 j

Ki0

þ eðdij � kijhijÞ (10)

We first assume that e = 0 in Eq. (10) and determine if there is a
stable equilibrium. Such an equilibrium is achieved when
individuals are distributed proportionally to the available
resources in each patch. Thus density of animals hij of species j

in patch i can be inferred from the total density of animals of
species j, hj by the following relation (see Appendix A.1):

hij ¼
KiPA

i0¼1 Ki0
h j (11)

This is a stable equilibrium for the fast dynamics. Individuals
are distributed according to the Ideal Free Distribution. We then
consider e 6¼ 0 and assume that in the global model given by Eq. (9),
equilibrium is always reached. For each species j, we determine an
equation that governs total population hj by summing the
equations for all patches i

dh j

dt
¼
X

i

dhij

dt
(12)

We now substitute hij in Eq. (9) by the value determined in (11)
at fast equilibrium. When the expression corresponding to
dispersal is null in Eq. (9), Eq. (12) reads:

dh j

dt
¼ h j

b
v j

aD jg j

G

sðhÞ þ G
� q j

� �
þ d j � k jh j (13)

where G ¼
PA

i¼1 Ki denotes the total quantity of grass,
sðhÞ ¼

Ps
j0¼1 g j0h j0 , d j ¼

PA
i¼1 dij and k j ¼

PA
i¼1 kijKi=

PA
i¼1 Ki. The

way of obtaining this equation is detailed in Appendix A.2. We have
now obtained a set of s differential equations, compared to a
system of s � A equations for the complete model.

6. Results

We now describe the equilibria and their stability for the
aggregated model with and without migration corridors. The
mathematical results obtained here hold under two conditions
that are ecologically relevant:

� viability of all species: we only consider species that are able to
survive in conditions when there is no competition. This means
that when food is abundant, the energy gained from grazing is
greater than energy spent for maintenance. The condition reads:

8 j 2 f1; . . . ; sg; aD jg j > q j (14)

� species have different parameters: we have determined the
following equilibria under the condition that ratios aDjgj/qj are
different for each j 2 {1, . . ., s}. If it was not the case, other
equilibria could exist, but the fact that two ratios would exactly
be the same does not make sense ecologically.

The equilibria are determined from Eqs. (13) and their stability
is tested by the analysis of the eigenvalues of the Jacobian matrix.

6.1. Analytical results for the aggregated model: case without

corridors

The system has the following equilibria:

� the origin (0, 0) is an unstable equilibrium;
� there are s non-trivial equilibria E�j ¼ ð0; . . . ; 0; h�j ; 0; . . . ; 0Þ, j 2 {1,

. . ., s}, where

h�j ¼
aD j

q j

� 1

g j

  !
G (15)

Let us consider j0 2 {1, . . ., s} such that for all j 2 {1, . . ., s}, j 6¼ j0,
g jh

�
j < g j0

h�0. Then E�j0
is a stable equilibrium, while for j 6¼ j0, E�j

are saddle points.
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same for every species and are equal to d).
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To summarize, the system presents one non-trivial stable
equilibrium and s � 1 non-trivial saddle point. The origin is always
an unstable equilibrium (see details in Appendix B). There is no
equilibrium for which several species can coexist. This can be
interpreted as competitive exclusion: only the most competitive
species can survive. This corresponds to the one which has the best
grazing ability, i.e. the one that maximizes (aDjgj/qj � 1).

6.2. Analytical results for the aggregated model: case with corridors

There exists a unique non-negative equilibrium h*, which is a
stable equilibrium (see Appendix C). In the case without corridors,
we determined that asymptotically only the zebra survive. In the
present case, adding a narrow migration corridor to the previous
model introduces a stable equilibrium, which guarantees
Fig. 3. Model output with migration corridors to other parks for e = 0.1 (a) and e = 5 (b). 

Grant’s gazelle (3) for dij = 200/A and kij = 0.01. Parameters are presented in Section 4. T

dotted line. All species survive in the long term. Aggregated model and complete model 

are closer to the ones of the aggregated model when e is small.
coexistence even if the animal densities are very low. The
equilibrium always exists when parameters dij are positive. The
values at equilibrium depend on parameters dij and kij. When
these parameters tend toward zero, densities at equilibrium also
tend toward zero. The dependence on dij of densities at equilibria
are shown in Fig. 2. When there are no migration corridors, the
equilibrium 0 is unstable. However, with migration corridors
present, the equilibrium of the model is always stable and is close
to 0 for a very small d.

6.3. Numerical results

Simulations for the model with implicitly represented corridors
(Fig. 3) and without corridors (Fig. 4) illustrate that the aggregated
model provides reliable results to approximate the dynamics of the
complete model. In these figures, dynamics of the complete model
are represented by solid lines while those of the aggregated model
are represented by dotted lines. Equilibria given by aggregated
model are qualitatively the same. The closer e is to 0, the closer the
values obtained from the complete model to those obtained from
the aggregated model. Dynamics are shown for e = 0.1 (Figs. 3(a)
and 4(a)). The dynamics of the complete and aggregated model are
very close. We illustrate the robustness of aggregation methods by
showing dynamics for very high values of e on Figs. 3(b) and 4(b)
(e = 5). The dynamics are still qualitatively the same. The difference
of the value at equilibrium is more important (Fig. 3(b)) and the
time to reach equilibrium is longer (Fig. 4(b)). Fig. 5 illustrates that
spatial distribution tends toward the one predicted by the
aggregated model. The curves correspond to the sums of
population densities in the patches of the same habitat (woodland,
bushland, etc.) and not the densities in each patch.

For the first case (blocked migration corridors), the analytical
results given by the aggregated model allow us to make predictions
about the dynamics of the complete model: the results allow us to
determine the equilibria and whether or not the dynamics tend
toward these equilibria. Possible equilibria values for each species
are presented in Table 2. For each species, the equilibrium value
correspond to the number of individuals that can be reached after a
transient period in the Amboseli area, when other species have
disappeared. The table also represents the corresponding densities.
Time series are shown for total population density for zebra (1), wildebeest (2) and

he complete model corresponds to the solid lines, and the aggregated model to the

give qualitatively similar outputs. The values at equilibrium for the complete model



Fig. 4. Model output for the blocked migration corridors case for e = 0.1 (a) and e = 5 (b). Time series for total population density for zebra (1), wildebeest (2) and Grant’s

gazelle (3). Parameter are presented in Section 4. Output for the complete model is represented by a solid line, and output for aggregated model by the dotted line. Wildebeest

and Grant’s gazelle become extinct. For e = 0.1, the complete model converges toward the equilibrium faster than for greater values of e (here a high value for e has been

chosen to emphasize the difference between the dynamics).
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The values g jh
�
j allow us to predict which species will survive

asymptotically: according to the previous mathematical results,
the species with the highest value survives. Others go extinct.

According to results shown in Table 2, we determine that only
zebra survives, reaching a total population of around 492,000
individuals in Amboseli, translating to approximately 40 individ-
uals per square kilometre.

Time series of population densities is shown on Fig. 4(a) for
e = 0.1 for both complete and aggregated model. After some
transient dynamics, both zebra and wildebeest populations seem
Fig. 5. Zebra distribution across different habitats (top to bottom: dense woodland,

open woodland, open bushland, grassland, dense bush, swamp, sueda, swamp edge,

area surroundings) for e = 0.1 and case without migration corridors. The other

parameters are described in Section 4. Output for the complete model is

represented by a solid line and output for aggregated model by the dotted line.

Both dynamics tend toward the same distribution.
to increase while Grant’s gazelle population goes extinct, wilde-
beest population eventually drops while zebra population reaches
its equilibrium. With the parameters determined from Amboseli
data, the disappearance of Grant’s gazelle is at the scale of a
century (decrease of 95% after 46 years for the aggregated model,
49 years for the complete model) while extinction of wildebeests
occurs after a much longer time (peak population for wildebeest
occurs during year 45 for the aggregated model and year 57 for the
complete model).

The peak for wildebeest population is reached during year 70
and Grant’s gazelle population drops to under 5% of initial
population after 89 years. According to these results, the
aggregated model proves efficient in determining the asymptotic
dynamics, giving good analytical results with a reduced system of
equations. The difference from the complete model lies in the delay
in reaching equilibrium.

Fig. 5 shows the distribution of one species (zebra) among the
different habitats when the migration corridors are blocked. The
shown distribution depends on the availability of resource in
different patches within the different major habitats in the
Amboseli area. After some transient dynamics, distribution tends
toward Ideal Free Distribution among the habitat, maximizing the
amount of grass that can be grazed per capita. For the aggregated
model, this distribution is always achieved because it corresponds
to the fast equilibrium (equilibrium for the dispersal model). Fig. 4
illustrates the difference between the complete model and the
aggregated model. For the aggregated model individuals are
always distributed according to an Ideal Free Distribution. For
Table 2
Total population and density values for each species at their respective equilibria.

The variable shown in the last column allows us to predict the long-term survival of

species. The species with the highest value of this variable survives, the others

become extinct in the area.

Species Population at equilibrium

[individuals]

Density

[ind/km2]

aD jg j

q j
� 1

Zebra 491,112 39.3 0.1275

Wildebeest 603,560 50.5 0.1253

Grant’s gazelle 519,777 41.6 0.01788
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the complete model, the distribution slowly tends toward the Ideal
Free Distribution. The speed of the convergence depends on the
scale difference (i.e. e) between dispersal and demography. The
faster the dispersal, the faster the Ideal Free Distribution is
achieved.

For the second case (open migration corridors), the analytical
results obtained with the aggregated model predicts the coexis-
tence of zebra, wildebeest and Grant’s gazelle. Although there are
many other factors that influence species density distribution and
are not considered in this model, the findings have potentially
important implications for the functionality of the Amboseli
ecosystem. The numerical simulations of the model show that the
three animal species can coexist for e = 0.1 (Fig. 3(a)). For a small
constant input of 200 individuals per day in the total area for each
species, and a daily output of 1%, at the equilibrium of the
aggregated model we have 20,851 zebras, 21,223 wildebeests and
20,045 Grant’s gazelles. The equilibrium for the complete model
has slightly different values.

7. Conclusion

Although Amboseli ecosystem has shown signs of resilience
over time, there are reasons to believe that the massive herbivore
population declines during the 2009 drought would not have
begun recovery, had it not been for the linkages to Tsavo National
Park and Tanzania. Our model show the need to allow free flow of
wildlife populations into and out of the ecosystem. When the
connections are blocked, our model predicts competitive exclu-
sion where only one species survives. However, with open
connections, the model predicts species coexistence. We suggest
that the surrounding ecosystems show species population
dynamics which are out of phase compared to those in the
Amboseli area. It is possible to maintain an exchange of animals
between the ecosystems which is not synchronized with patterns
of animal dispersal within the park, and hence maintain
biodiversity in Amboseli area. When there is a large number of
surrounding ecosystems with unsynchronized oscillations of
densities, the total influx dj is approximately constant and is equal
to its mean value.

The model suggests that a disconnected Amboseli ecosystem
will certainly not be able to support the many wildlife species that
exist in it. In Amboseli, the uncontrolled expansion of agriculture
and human settlement risks blocking of possible migration
corridors that could lead to a scenario similar to our model
predictions in the case of blocked migration corridors. By carefully
mapping out these corridors for wildlife utilization, situations that
may lead to competitive exclusion could be avoided. For proper
functionality of the already stressed Amboseli ecosystem due to
general loss of biodiversity, frequent droughts and possible climate
change, there is an urgent need to control human activities around
the park. Our model can certainly help in guiding conservation
policy formulation.

We assumed for simplicity that the grass available each day for
grazing was constant in each habitat and patch of the spatial
network. This allowed us to derive from the complete model, a
reduced model governing the total densities of animals at a slow
time scale. This aggregated model was helpful since we could
obtain analytical results about the asymptotic behavior of the
system. Looking ahead, it is also possible to suppress corridors
selectively, since different species may respond differently to
increased human activities.
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Appendix A. Construction of the aggregated model

When e is small, dispersal is fast compared to demography. We
introduce a fast time scale by considering t = t/e and rewrite Eq. (9)

dhij

dt
¼ ehij

b
v j

aD jg jKiPs
j0¼1 g j0hij0 þ Ki

� q j

  !
� Vij j

Ki
hij þ

X
i0 2 Vi

hi0 j

Ki0

þ eðdij þ kijhijÞ (A.1)

We now consider the model as an e-perturbation of the non-
perturbed problem obtained for e = 0 in Eq. (A.1). Thus we first
consider the dispersal part of the dynamics in Eq. (A.1).

A.1. Analysis of fast dynamics

The analysis of dispersal dynamics is a very classic problem.
Analysis of this stochastic process shows that the system tends
toward a stable equilibrium, that we call fast equilibrium. The
equilibrium is obtained for values of hij that verify for every i and j

� Vij j
Ki

hij þ
X
i0 2 Vi

1

Ki0
hi0 j ¼ 0 (A.2)

This equilibrium is reached when animal densities are
distributed among patches proportionally to the availability of
resources, thus realizing the Ideal Free Distribution. At fast
equilibrium, for species j, the density of animals in patch i is then
proportional to the quantity of grass available every day in that
patch. Density hij of species j in patch i can be inferred from the
total density of species j, hj by the following relation:

hij ¼
KiPA

i0¼1 Ki0
h j (A.3)

We denote G ¼
P

i0Ki0 the total quantity of grass. This
equilibrium is hyperbolically stable for the fast system, which
means that this set of fast equilibria constitutes an attracting
invariant set for small positive values of e.

A.2. Aggregated model

We build an approximate model using aggregation methods
based on Fenichel theorem (Auger and Poggiale, 1995). Aggrega-
tion methods are detailed in the present issue, see also Carr (1981),
Fenichel (1971), Hirsch et al. (1970).

In order to build the aggregated model, we substitute hij in
Eq. (9) with the value determined in (A.3) at fast equilibrium. In
every equation of the system, the expression corresponding to
dispersal is null according to Eq. (A.2). Let us describe the system at
slow time scale. Eq. (9) now reads:

dhij

dt
¼ hij

b
v j

aD jg j

KiPs
j0¼1 g j0hij0 þ Ki

� q j

  !
þ dij � kijhij (A.4)

For each species j, we can obtain a general equation that
governs the total density by summing Eq. (A.4):
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dh j

dt
¼
X

i

dhij

dt
(A.5)

¼
X

i

hij

b
v j

aD jg jKiPs
j0¼1 g j0hij0 þ Ki

� q j

  !
þ dij � kijhij

  !
(A.6)

¼
X

i

Ki

G
h j

b
v j

aD jg jKiPs
j0¼1 g j0

Ki
G h j0 þ Ki

� q j

  !
þ d j � k jh j (A.7)

¼ h j

b
v j

X
i

Ki

G

aD jg jGPs
j0¼1 g j0h j0 þ G

� q j

  !
þ d j � k jh j (A.8)

where d j ¼
PA

i¼1 dij and k j ¼
PA

i¼1 kijKi=
PA

i¼1 Ki. This leads to the
following set of equations:

dh j

dt
¼ h j

b
v j

aD jg jG

sðhÞ þ G
� q j

� �
þ d j � k jh j (A.9)

where sðhÞ ¼
Ps

j0¼1 g j0h j0 .

Appendix B. Analysis of the aggregated model without
migration corridors

In this appendix, we detail the calculation of equilibria and their
stability. When there is no migration corridors, dij = 0 and kj = 0.
Before determining the equilibria, we compute the Jacobian matrix
J associated with the system in the general case at an arbitrary
point as the result is used for different cases when determining
stability.

J j;k ¼
@h j

@hk

(B.1)

where hj corresponds to right term of Eq. (13) such that for all
j 2 {1, . . ., s},

dh j

dt ¼ h jðh1; . . . ; hsÞ. We now determine the elements
of the Jacobian: for all j 2 {1, . . ., s}, we have

J j; j ¼
@h j

@h j

(B.2)

¼ b
v j

aD jg jG
sðhÞ þ G � h jg j

sðhÞ þ Gð Þ2
� q j

  !
(B.3)

and for j 6¼ k,

J j;k ¼
@h j

@hk

(B.4)

¼ �h j

baD jg j

v j

Ggk

sðhÞ þ Gð Þ2
(B.5)

We now determine the equilibria of the aggregated model.
Those equilibria correspond to the sets of values for hj that verify

8 j 2 f1; . . . ; sg;
dh j

dt
¼ 0:

Trivial equilibria: the point 0 is a trivial equilibrium. We
determine the elements of the Jacobian J(0) at origin from (B.3): for
j 2 {1, . . ., s},
J j; jð0Þ ¼ b
v j
ðaD jg j � q jÞ (B.6)

and from (B.5), we obtain for k 6¼ j, Jj,k(0) = 0. The equilibrium is
unstable if and only if there exists j 2 {1, . . ., s} such that aDjgj > qj.
This condition can be easily interpreted: in order for a species j to
survive, energy gained from grazing must be greater than the
active metabolic energy qj when there is no competition for
resources. If this condition is not fulfilled always, it leads to
extinction of species j, and there is no interest in the asymptotic
dynamics of species j. We assume from now that this condition is
verified for all j 2 {1, . . ., s}, i.e.

8 j 2 f1; . . . ; sg; aD jg j > q j (B.7)

Non-trivial equilibria: we try to determine a non-trivial
equilibrium ðh�1; . . . ; h�s Þ. This equilibrium verifies for all j

h�j ¼ 0 or aD jg j

G

sðh�Þ þ G
¼ q j:

The second equation is equivalent to

sðh�Þ þ G ¼
aD jg jG

q j

(B.8)

In the second equation, the left term does not depend on j. So
there exists a constant z 2 R, for all j 2 {1, . . ., s} such that h�j 6¼ 0,
(aDjgj)/qj = z.

Ecologically speaking, it is irrelevant the equation ðaD jg jÞ=q j ¼
ðaD j0g j0 Þ=q j0 is verified for two different species j and j0 6¼ j. We
therefore discard such cases from our study. We then consider s

non-trivial equilibria E�j ; j 2 f1; . . . ; sg such that
E�j ¼ 0; . . . ; 0; h�j ; 0; . . . ; 0

� �
. From Eq. (B.8), we determine that h�j

verifies

h�j ¼
aD j

q j

� 1

g j

  !
G (B.9)

We now determine stability for E�j . Reindexing the equations
does not modify the dynamics of the system, thus we only have to
determine stability for E�1 by considering the Jacobian J* at this
equilibrium. From Eq. (B.5), we deduce that for j, k 2 {1, . . ., s} with
j 6¼ 1 and j 6¼ k, J�j;k ¼ 0. The Jacobian is then a triangular matrix, and
its eigenvalues are given by diagonal coefficients. We now
determine these eigenvalues:

J1;1 ¼
b
v1

aD1g1G
G

g1h
�
1 þ G

� �2
� q1

  !
(B.10)

¼ b
v1

aD1g1G2

ððaD1g1=q1ÞG � G þ GÞ2
� q1

  !
(B.11)

¼ b
v1

q2
1

aD1g1
� q1

� �
(B.12)

¼ bq1

v1

q1

aD1g1
� 1

� �
(B.13)

We then deduce from condition (B.7) that J1,1 < 0.
We now determine the other elements of the diagonal: for all

k 2 {2, . . ., s} we have:
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Jk;k ¼
b
vk

aDkgk

G

g1h
�
1 þ G

� qk

� �
(B.14)

¼ bqk

vk

aDkgkG

qk

1

g1h
�
1 � gkh

�
k þ ððaDkgkGÞ=qkÞ

� 1

  !
(B.15)

We deduce that Jk,k < 0 if and only if aDkgkG=qk < g1h
�
1 � gkh

�
k

þaDkgkG=qk, and so Jk,k < 0 if and only if gkh
�
k < g1h

�
1.

We can now draw conclusions about the stability of equilibrium
E�1. Two cases can occur: if for all k 2 {2, . . ., s}, gkh

�
k < g1h

�
1, then E�1

is stable. If there exists k 2 {2, . . ., s} such that gkh
�
k > g1h

�
1, then E�1 is

a saddle point (we discard cases of equality because they are
ecologically unlikely to happen).

In summary, the system presents, s non-trivial equilibria
E�j ; j 2 f1; . . . ; sg. Let us consider j0 2 {1, . . ., s} such that for all
j 2 {1, . . ., s}, j 6¼ j0, g jh

�
j < g j0

h�0. Then E�j0
is a stable equilibrium,

while for j 6¼ j0, E�j are saddle points.

Appendix C. Analysis of the aggregated model with migration
corridors

We determine non-negative equilibria and their stability.

C.1. Positive equilibria

With h = (h1, . . ., hs), let us denote gj = qj + kjvj/b, Dj = djvj/b,
and sðhÞ ¼

Ps
j¼1 g jh j. Equilibria verify:

h j aD jg j

G

sðhÞ þ G
� g j

� �
þ D j ¼ 0 8 j 2 f1; . . . ; sg (C.1)

or

h j ¼
ðsðhÞ þ GÞD j

ðsðhÞ þ GÞg j � aD jg jG
8 j 2 f1; . . . ; sg (C.2)

If h is a positive equilibrium, then sðhÞ > M ¼
max j¼1...s aD jg j=g j � 1

� �
G, otherwise one of the coordinates of h

will be negative according to Eq. (C.2). By summing Eq. (C.2), it also
verifies

sðhÞ ¼
Xs

j¼1

g j

ðsðhÞ þ GÞD j

ðsðhÞ þ GÞg j � aD jg jG
(C.3)

which is equivalent to G(s(h)) = 0, where G : M; þ1� ½ ! R is given
by:

GðxÞ ¼
Xs

j¼1

g j

x þ Gð ÞD j

ðx þ GÞg j � aD jg jG
� x (C.4)

We have

G
0ðxÞ ¼

Xs

j¼1

g j

ððx þ GÞg j � aD jg jGÞD j � ðx þ GÞD jg j

ððx þ GÞg j � aD jg jGÞ
2

� 1 (C.5)

¼ �
Xs

j¼1

g j

aD jg jGD j

ððx þ GÞg j � aD jg jGÞ
2
� 1 (C.6)

< 0 (C.7)

Since limx ! Mþ GðxÞ ¼ þ1 and limx ! þ1 GðxÞ ¼ �1, there
exists a unique solution of the equation G(x) = 0. We denote this
solution as s*.
From (C.2), we now deduce the existence of a positive
equilibrium h* that verifies Eq. A.9 and which is uniquely defined by

h�j ¼
s� þ Gð ÞD j

ðs� þ GÞg j � aD jg jG
8 j 2 f1; . . . ; sg (C.8)

C.2. Stability of equilibrium h*

We now determine the elements of the Jacobian: for all j 2 {1,
. . ., s}, we have

J�j; j ¼ aD jg jG

Ps
j0¼1 g j0h

�
j0
þ G � h�jg jPs

j0¼1 g j0h
�
j0
þ G

� �2
� g j (C.9)

¼ �
D j

h�j
�

aD jg jGh�jg jPs
j0¼1 g j0h

�
j0
þ G

� �2
(C.10)

< 0 (C.11)

and for j 6¼ k,

J�j;k ¼ �
h�jaD jGg jgkPs
j0¼1 g j0h

�
j0
þ G

� �2
(C.12)

< 0 (C.13)

Let us denote

D ¼ diag
D1

h�j
; . . . ;

Ds

h�s

  !
(C.14)

A ¼ aGPs
j0¼1 g j0h

�
j0
þ G

� �2
ðD1g1h

�
1; . . . ; Dsgsh

�
s Þ (C.15)

H ¼ ðg1; . . . ; gsÞ (C.16)

Vector A and H are positive and matrix D has positive diagonal
elements. We have J* = � D � ATH. Let l = a + ib be an eigenvalue of
J*. Because l is also an eigenvalue, we consider the case where
b > 0. Let X be an eigenvector associated to l. Y ¼ ðHXÞX is also an
eigenvector associated to l. Let us write Y = U + iV, where U = (u1,
. . ., us)

T and V ¼ ðv1; . . . ; vsÞT. HY ¼ HðHXÞX ¼ HXðHXÞ ¼ jHXj2, thus
HY is real and non-negative, i.e. HU � 0 and HV = 0.

l verifies �DY � ATHY = lY, and so the following equation
holds:

�ðD þ lIÞY ¼ ðHYÞAT (C.17)

By separating real and imaginary parts, the equation is
equivalent to

�ðD þ aIÞU þ bV ¼ ðHUÞAT

ðD þ aIÞV þ bU ¼ 0

�
(C.18)

Now we suppose that a � 0. The second equation from (C.18)
implies that for j 2 {1, . . ., s}, v j and uj have opposite signs. Since
HU = HY � 0, we deduce from the first equation that 8j 2 {1, . . ., s},

�ðDjj þ aÞu j þ bv j� 0 (C.19)
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and so uj � 0 and v j� 0. But this implies that HU � 0. So HU = 0, and
so U = V = 0, which is impossible. That means that a < 0, and so
Re(l) < 0.

All the eigenvalues have a negative real part, h* is a stable
equilibrium.
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